1957

IRE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES

127

The Statistical Prediction of Voltage
Standing-Wave Ratio”

J. A. MULLENY} axp W. L. PRITCHARDZ

Summary—The problem of predicting the probability distribu-
tion of vswr for many randomly spaced discontinuities is solved using
the “central limit theorem.” Assuming that reflection factors add in
the complex plane and using the ‘‘central limit theorem’’ the result
is shown to be a Rayleigh distribution in terms of the reflection factor.

The probability of the vswr over a band of frequencies is calcu-
lated using the concept that this band of frequencies can be con-
sidered as a number of statistically independent samples.

DisSTRIBUTION FUNCTION FOR VOLTAGE STANDING-
WavVE RATIO

HE DESIGNER of microwave systems is faced
T with the problem of estimating the voltage stand-

ing-wave ratio resulting from the combined reflec-
tions of many components. Typically, a radar system
may contain an antenna reflector, radome, horn feed,
polarizing devices, two or three rotating joints, a wave-
guide switch, duplexer, and perhaps twenty or thirty
bends, twists, and flanges. In the worst conceivable
case the over-all voltage standing-wave ratio will be
the product of the component voltage standing-wave
ratios. With reasonably attainable values of voltage
standing-wave ratio for the components this worst case
is often too horrible to contemplate. Conversely, an
acceptable value of maximum over-all voltage standing-
wave ratio leads to impossibly small values for the
components. An exact computation of the over-all volt-
age standing-wave ratio from the values of component
voltage standing-wave ratios and line lengths is extra-
ordinarily complicated. Even worse, the line lengths are
often not known until late in the system development
and long after the components are designed. In the past,
equipment designers have relied on accumulated experi-
ence to estimate the practical result, 7.e., to take ad-
vantage of the small statistical probability that the
individual mismatches will combine to give the worst
case.

It is the purpose of this paper to treat the problem
statistically, 4.e., to obtain the distribution function
of over-all standing-wave ratio in terms of the number
of discontinuities and their mean squared reflection
factor.

Note that we are not considering the production
problem of quality control which is that of predicting
the variation of voltage standing-wave ratio of an assem-

* Manuscript received by the PGMTT, October 1, 1956.
1 Raytheon Mfg. Co., Waltham, Mass.
1 Raytheon Mfg. Co., Wayland, Mass.

bly when the line lengths vary from their design values.
This problem has been dealt with by Brown.!

In order to make the problem analytically tractable
we assume that the reflection factors (complex) add, i.e.,

n

? = Z fyiefzaz
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¥y = E'y,-cos 20, + 4 Z vs sin 26,
t=1 i=1

¥=vs+ j'Yy- (1)
This is a reasonable approximation if the magnitude of
the individual reflection factors are small. Practical sys-
tem designs usually involve magnitudes of ¥ well within
these limits. It should be noted that, mathematically
at least, this assumption permits over-all magnitudes of
v greater than unity, which is physically impossible.
However, the mathematics will also show that the prob-
ability of v anywhere near unity (where the additive
approximation is invalid) is exceedingly slight.

We further assume that the line lengths between dis-
continuities are independent of each other and that all
values of 6 between O and 27 are equally probable.
These assumptions seem reasonable in view of the fact
that electrical line lengths in a complicated microwave
system are generally much longer than 27 and are chosen
for random mechanical reasons.

We finally assume that %, the total number of dis-
continuities, is large (#>8). If the system has periodic
discontinuities, e.g., flanges recurring at equal intervals,
they should be considered as a single discontinuity, the
magnitude of which is calculable separately and exactly.

These assumptions are sufficient to use the “central
limit theorem” of probability theory.?

The central limit theorem can be stated for our pur-
poses as follows: the joint distribution function of the
real and imaginary parts of the sum of a large number
of independent complex random variables asymptotical-
ly approaches normal regardless of the distribution
functions of the individual random variables.?

Eqg. (1) for the complex reflection factor is the sum
of a large number of independent random variables

1 L. W. Brown, “Problems and practice in the production of wave-
guide transmission systems,” Proc. IEE, vol. 93A, pp. 639-646;
1946.

2 J. V. Uspensky, “Introduction to Mathematical Probability,”
McGraw-Hill Book Co., New York, N. Y. ch. 15; 1947.

3 There are only slight restrictions not applicable here.
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and, as such, comes within the scope of the central limit
theorem.

The joint distribution of the real and imaginary com-
ponents of ¥ is now given in the two dimensional normal
form.4

W('Yx: 'Yy)
1 . {_ Y2 — 2ryayy + vy“} )

= ———————=— €X
2ma?/1 — #? 202(1 — 7?)

Eq. (2) is the joint normal distribution where the
mean values of v, and 9, vanish and where the mean
squared values are equal and calculated as follows:

v = D D i cos 20y; cos 26, 3
A

In averaging the right hand side over 0, and 0, their
independence when 75£j causes their joint average to
be the same as their separate averages, and the uni-
form distribution of §, and 8; causes these averages to
be zero. Thus we can write

vt = D v cos? 26; (4)

= > 2 cos? 26, (4a)

Since 8; is uniformly distributed we can make use of
the fact that the mean squared value of a cosine is equal
to 3 and write:

vA= 12T 7 (5)
Similarly
it =1/2 é y.2
and by definition

R (5a)

We must now calculate 7, the correlation coefficient,
which is defined as follows:

e = Y Yy (6)

Using an argument identical to that following (3) we
proceed:

or = E Y. cos 207y ; sin 26,6,;

B

= > .2 cos 26, sin 26;
=1/2 Y ~sin 44;.

¢ H. Cramer, “The Elements of Probability Theory,” John Wiley
and Sons, New York, N. Y., ch. 9, sec. 4; 1955.
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Thus
or = 0. (6a)

Now, we can write the joint distribution simplified as:

1 j02 2
exp — (Y_—f—_v_y_> i (7
0_2

W(yave) = o 252

Since we are seeking the distribution of the magnitude
of the reflection factor we must transform from rectan-
gular to polar coordinates.

The element of area goes from dvy.dvy, to ydydf. With
v. and 9, expressed in polar coordinates, the joint den-
sity function becomes

1 29,2
S€7 127y dydd. (8)

Wy 2y vi)dy odyy =
2w

From the definition of W(y, #)® we have that

Wy, 6) = 2” et )

i

By integrating over # the distribution of 7 is seen to be

v 2
W(y) = — i,
g

(10)

This is the well-known Rayleigh distribution. In fact
we have just rederived in a different context the two
dimensional “random walk” problem for a large num-
ber of steps.5—8

The value which maximizes W(v) is defined as the
most probable value of v and is designated .. Since
¥ 18 found equal to o, we have

Y
W("Y) = -——2 6*72/27"”2.

Ym

(11)

The distribution of over-all reflection factor has been
plotted using (11) for representative values of v, in
Fig. 1. Note that the smaller v,, the sharper and higher
is the distribution function. The most probable value,
Y, is calculated from the individual reflection factors

as follows:
1 <Zn: 1/2
_ %2> '
V2\ i

If 7y is the rms value of the v,'s, we can rewrite (12)
to show explicitly the dependence on # as

Ym = 0 (12)

n
— Yo.
2

8 W{v, 6) stands for the probability density of the random vari-
able within the parentheses and does nof reprersent the same function
for different random variables.

6 1. Rayleigh, Phil. Mag., vol. 10, p. 73; 1880.

7 K. Pearson, Drapers Co. Res. Memo No. 4, Biometric Series
No. III; 1906.

8 J. L. Lawson and G. E. Uhlenbeck, “Threshold Signals,” Rad.
]1'_,;;)0 Ser. No. 24, McGraw-Hill Book Co., Inc., New York, N. Y.;

Ym = (13)
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Fig. 1—Probability density of reflection factor with the most
probable over-all reflection factor as parameter.

We note that the probability density in the region
where the additive approximation becomes questionable
(y=20.5) is extremely small.

The probability P(y) that the reflection factor is less
than «y is given by

y
P(y) = f W(y)dy = 1 — e, (14)
0

The convenience of the results is increased by writing
the probability in terms of p, the vswr, rather than v. vy
and p are related by
p— 1
p+1

vy = (15)

Defining pn to correspond to . using (15), we can
write

e e [ 1

P(p) is plotted in Fig. 2 for the same values of p,, as
in Fig. 1. These curves can be used to compute the prob-
ability that, among a large number of possible designs
with the same set of discontinuities, the vswr of a par-
ticular design will be less than p. Note that the probabil-
ity of being less than p,, is only 0.4, so that p, is not a
conclusive design parameter, but for moderately larger
values of p the asymptotic approach to unity is rapid.

To plot these results in a still more useful form we
define p.g as that value of vswr that we have only a ten
per cent probability of exceeding. From (14) we find

.o = v/2 Log 10y = 1.524/n70 (17
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Fig. 2—Cumulative probability of voltage standing-wave ratio with
the most probable over-all reflection factor as parameter.

whence

_1+‘Y.9
1— v,

p.9 (17a)

Eq. (17), using the variable of (17a), is plotted in
Fig. 3 for representative values of n. These curves
permit a system designer to predict, given a number of
discontinuities and their typical values, a very conserva-
tive result for the over-all vswr. Using the preceding
methods a set of curves is easily constructed to predict
a less conservative result, e.g., P(p) =4%.
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Fig. 3—~The value of vswer exceeded in only 10 per cent of the pos-
sible designs plotted vs the vswr of a typical discontinuity, with
the number of discontinuities as a parameter.

PREDICTION OVER A WIDE-FREQUENCY BAND

So far the theory has considered results at a single
frequency only and cannot be used to predict results
over a band of frequencies. We have approached this
latter problem by considering it as a “sampling” prob-
lem. In other words, if the frequency range is wide, we
actually have a multiplicity of problems, each the same
as that solved in the first section. The difficulty, of
course, is in deciding how many independent samples
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the frequency band contains. We estimate this number
and show that the answer is insensitive to this estimate.

There are two possibilities, that the reflection factor
is greater than 7y or less than . The joint probability
that in &V tries, represented by the IV independent fre-
quency points, there will be N favorable results, z.e.,
vswr less than v, is simply PY(vy).?

P¥(vy) is plotted in Fig. 4 using a normalized abscissa
scale. Note that for a constant probability the value of
v varies about as log N. This dependence is insensitive
to NV which is fortunate since the awkward aspect of this
problem is in deciding on the number of independent
frequencies.
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Fig. 4—The cumulative probability that the reflection factor is less
than v in a bandwidth B plotted against v/v» with the number
of independent samples (determined from B) as parameter.

Our method is based on the following considerations.
When the frequency has changed sufficiently that the
average electrical length between discontinuities has
changed by w, the individual reflection factors have
changed their phases enough so that their sum can be
considered as a new random variable. On this basis, IV
is given by

N =

_, 5L 18)

5
af

This estimate of IV is optimistic and realistic system
planning should use a value of NV probably twice that
given by (18).

In many typical systems, one length (e.g., a smooth
run from transmitter to antenna) is much longer than
any of the others. This problem should not be considered
statistically on an over-all basis, but should be resolved
into two or more separate statistical problems, whose

® We have used v rather than p as an independent variable in
order to achieve a universal curve.
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results are combined by conventional methods. In other
words, at some point in the frequency band, correspond-
ing to a single independent sample, two groups of dis-
continuities separated by a very long length of line will
combine in the most unfavorable phase; so that the
most probable vswr is the product of the most probable
vswr’s of the separate groups.

If the magnitude of the vswr’s of the individual dis-
continuities varies over the band, a conservative ap-
proach to system design would use the largest values in
calculating v,.

CONCLUSION

We have determined the probability distribution at
a single frequency for many randomly spaced small
discontinuities, and plotted results in several convenient
forms. This theory has been extended in an intuitive
fashion to cover a band of frequencies.

List or SYymMBOLS

magnitude of over-all reflection factor.
over-all complex reflection factor.
v:; magnitude of the reflection factor of the th
discontinuity.
v. real component of over-all reflection. factor.
v, imaginary component of over-all reflection fac-
tor.
vs rms value of the v,'s.
the most probable value of 7.
A midband wavelength.
#; electrical line length, in excess of a whole num-
ber of 27’s, to sth discontinuity.
total number of discontinuities.
7 correlation coefficient between v, and 7,.
o standard deviation of either v, or v,.
5, Kronecker delta §;; = O} e ].
1 i=7
L average length between discontinuities.
probability density (distribution function) of
variable included in parentheses.
N number of independent samples in the system
bandwidth.
p over-all voltage standing-wave ratio.
that value of over-all vswr exceeded in only 10
per cent of the possible designs.
p» the most probable value of p.
the probability that the random wvariable is
less than the value in parentheses.
total system bandwidth.
midband frequency.
a bar over any term indicates the taking of its
arithmetic mean.
frequency spacing between independent sam-
ples.



